
Standard Form 298 (Rev 8/98) 
Prescribed by ANSI  Std. Z39.18

W911NF-10-1-0176

804-828-5842

Technical Report

57352-NS.10

a. REPORT

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

Decision making in military medical evacuation (MEDEVAC) of casualties consists of identifying which 
MEDEVAC asset to dispatch in response to a casualty and which medical treatment facility to transport the 
casualty, both of which contribute to the likelihood of casualty survival. These decisions become complicated when 
MEDEVAC assets and medical treatment facilities are distinguishable and casualties are prioritized as life-
threatening and non life-threatening. In this paper, an undiscounted, infinite horizon Markov decision process 
model is developed that examines the interrelated decisions of how to optimally dispatch MEDEVAC assets to calls 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

15.  SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17.  LIMITATION OF 
ABSTRACT

15.  NUMBER 
OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

Approved for public release; distribution is unlimited.

An air MEDEVAC asset dispatching and prioritized casualty 
transporting model for military medical evacuation systems with 
distinguishable medical treatment facilities and errors in triage

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 
of the Army position, policy or decision, unless so designated by other documentation.

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office 
 P.O. Box 12211 
 Research Triangle Park, NC 27709-2211

markov decision processes, military MEDEVACS, informational accuracy in decision-making

REPORT DOCUMENTATION PAGE

11.  SPONSOR/MONITOR'S REPORT 
NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)
    ARO

8.  PERFORMING ORGANIZATION REPORT 
NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER
Laura McLay

Benjamin Grannan, Laura McLay

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection 
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Virginia Commonwealth University
800 East Leigh Street, Suite 3200
P.O. Box 980568
Richmond, VA 23298 -0568



ABSTRACT

An air MEDEVAC asset dispatching and prioritized casualty transporting model for military medical evacuation 
systems with distinguishable medical treatment facilities and errors in triage

Report Title

Decision making in military medical evacuation (MEDEVAC) of casualties consists of identifying which 
MEDEVAC asset to dispatch in response to a casualty and which medical treatment facility to transport the casualty, 
both of which contribute to the likelihood of casualty survival. These decisions become complicated when 
MEDEVAC assets and medical treatment facilities are distinguishable and casualties are prioritized as life-
threatening and non life-threatening. In this paper, an undiscounted, infinite horizon Markov decision process model 
is developed that examines the interrelated decisions of how to optimally dispatch MEDEVAC assets to calls for 
service and transport casualties to medical treatment facilities. The model accounts for errors made during triage of 
casualties to investigate the revelation of information over time and allows for batch arrival of casualties to the 
system. The MDP is solved with a value iteration algorithm. The optimal policy is compared to three heuristic 
casualty transport policies.



An air MEDEVAC asset dispatching and prioritized casualty

transporting model for military medical evacuation systems with

distinguishable medical treatment facilities and errors in triage

Benjamin C. Grannan
Virginia Commonwealth University

Department of Statistical Sciences & Operations Research
1015 Floyd Avenue, Box 843083
Richmond, Virginia 23284 USA

grannanbc@vcu.edu

Laura A. McLay
University of Wisconsin-Madison

Industrial and Systems Engineering
3218 Mechanical Engineering Building

1513 University Avenue, Madison, WI 53706 USA
lmclay@wisc.edu

February 13, 2014

Abstract

Decision making in military medical evacuation (MEDEVAC) of casualties consists of identi-
fying which MEDEVAC asset to dispatch in response to a casualty and which medical treatment
facility to transport the casualty, both of which contribute to the likelihood of casualty survival.
These decisions become complicated when MEDEVAC assets and medical treatment facilities
are distinguishable and casualties are prioritized as life-threatening and non life-threatening. In
this paper, an undiscounted, infinite horizon Markov decision process model is developed that
examines the interrelated decisions of how to optimally dispatch MEDEVAC assets to calls for
service and transport casualties to medical treatment facilities. The model accounts for errors
made during triage of casualties to investigate the revelation of information over time and al-
lows for batch arrival of casualties to the system. The MDP is solved with a value iteration
algorithm. The optimal policy is compared to three heuristic casualty transport policies.

Keywords: Markov decision process, military medical evacuation systems, triage

1 Introduction

Effective medical evacuation (MEDEVAC) of wounded soldiers (casualties) in military operations

is important to the survivability of the combat soldier (Zinder, 2007). Transporting casualties to a

medical treatment facility in a timely manner prevents the deteriorating health and potential death

of casualties. The effective MEDEVAC of casualties also contributes to the potential psychological
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advantage for those participating in combat, who understand that medical assistance will come

quickly once requested (Bastian et al., 2012).

While this paper focuses on a model configuration for the United States, the model is applicable

to other countries. Effective evacuation of casualties is an important problem shared across all

countries that support combat troops. Moreover, issues examined in this paper, such as imperfect

initial triage, the collection of new information over time, and medical guidelines for transporting

military casualties, are generally shared across countries, as evidenced by a recent MEDEVAC

summit held in London, England in October 2013 (MEDEVAC Summit, 2013).

This paper focuses on the dispatch and transport of causalities in United States military sys-

tems. Casualties arrive as calls for service, where dispatchers interpret the call detailing a casualty

event and make a resource allocation decision regarding which MEDEVAC asset to dispatch to the

casualty and later select which medical treatment facility to transport the casualty (Bozell, 2013).

The MEDEVAC asset dispatched also transports the casualty to the medical treatment facility

(i.e., a different MEDEVAC asset would not transport the casualty based on additional informa-

tion collected at the scene) and therefore, the dispatch and transport decisions are interrelated.

Identifying effective policies for dispatching air MEDEVAC assets and transporting casualties

can be counter-intuitive. A fleet of potential air MEDEVAC assets are distinguishable by their base

location, and therefore articulate different response times to casualties. Likewise, medical treatment

facilities are distinguishable by both the capable level of care, i.e., a role 2 medical treatment facility

versus a role 3 medical treatment facility, and the proximity of the medical treatment facility to

the casualty location. Further, there exists a triage scheme within military evacuation systems, in

which the categories used to rank injuries for precedence in evacuation are as follows (Bozell, 2013):

• “CAT A”: Alpha category includes urgent casualties that need to be treated within one hour.

• “CAT B”: Bravo category includes priority casualties that need to be treated within four

hours.

• “CAT C”: Charlie category includes routine casualties that need to be treated within twenty-

four hours.

The evacuation triage system lends itself to sub-categorizing casualties based upon priority. For
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example, a system that identifies only high-priority and low-priority casualties, the calls for service

which have been categorized as CAT A could be seen as high-priority, while all other calls for

service could be seen as low-priority. An alternative classification would be treating both the CAT

A and CAT B calls for service as high-priority and the CAT C calls for service as low-priority. The

prioritization scheme can be generalized for systems with more than two priority levels.

Military medical evacuation systems aim to transport CAT A casualties to a medical treatment

facility within one hour, a practice commonly known as the Golden Hour (Bozell, 2013). The

fundamental idea of the Golden Hour is that mortality is least likely to occur if initial treatment

of a severe trauma casualty begins within one hour post injury. A military evacuation system is

evaluated against the Golden Hour standard to increase survivability of the most urgent CAT A

casualties. Improving the logistics of MEDEVAC systems to meet the Golden Hour standard is an

important problem found frequently in the popular press (Pahon (2012); Doane (2011); Shinkman

(2013)).

The Golden Hour performance measure evaluates time until treatment of a casualty, and it is

in contrast with performance measures used by civilian emergency medical systems (EMS). Nearly

all civilian EMS systems evaluate performance according to response times as opposed to casualty

delivery times (McLay, 2010). As a result, nearly all research in civilian systems focuses on triage

accuracy and initial dispatch decisions. However, the importance of triage on resource allocation

decisions is well-documented area in civilian systems (see Clawson et al., 1999; Dunford, 2002), and

this issue becomes more complex in military MEDEVAC systems because dispatch and transport

decisions are interrelated and more accurate information is collected at the scene.

This paper formulates a Markov decision process (MDP) model to solve a MEDEVAC asset

dispatching and casualty transporting problem with two interrelated types of decisions: first, how

to initially dispatch location-dependent air MEDEVAC assets to location-dependent casualties,

and second, how to identify distinguishable hospitals to transport the casualties. Both types of

decisions indirectly affect the high-priority casualty’s likelihood of survival, which is dependent

upon time until treatment in a medical treatment facility (Cunningham et al., 1997). To gain

insight into military medical evacuation systems, the MDP model determines how to maximize the

long-run average Golden Hour reward over the truly high-priority casualties while also providing
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timely evacuation to low-priority casualties. The MDP model allows for classification errors in the

initial triage, in which a truly low-priority casualty may be initially classified as high-priority, and

vice-versa, thus leading to dispatch decisions with imperfect information. However, upon arrival

at the scene, it is assumed that the medics from the responding air MEDEVAC asset accurately

diagnose the severity of each call thus make transport decisions to the medical treatment facility

with perfect information. The MDP model also accounts for batch, or multiple, casualties in a call

for service.

This paper is organized as follows. Section 2 provides a literature review on military MEDEVAC

asset optimization as well as dispatching and transporting models in the operations research litera-

ture. Section 3 outlines the novel MDP model. A computational example of the U.S. configuration

is included in Section 4. Concluding remarks and future work are given in Section 5.

2 Background

There are a number of existing military research papers related to this effort. Higgins (2010) intro-

duces the role and capabilities of U.S. Army MEDEVAC helicopters by providing an assessment of

the operational issues. Operational issues of helicopters are pivotal in any research study of casu-

alties and medical evacuation systems, due to the speed of response dictating survival likelihood.

Several models focus on locating assets. Bastian (2010) presents a multi-criteria decision analy-

sis model to determine the minimum number of MEDEVAC helicopters needed at each medical

treatment facility to maximize the coverage of the theater-wide casualty demand, while minimizing

the maximal medical treatment facility evacuation site total vulnerability to enemy attack. Zeto

et al. (2006) also seeks to maximize the theater-wide casualty demand coverage, by examining the

pre-location of air MEDEVAC assets, along with type and quantity, while balancing MEDEVAC

asset reliability. Fulton et al. (2009) introduce a two stage stochastic optimization modeling frame-

work for the medical evacuation of casualties, which identifies optimal casualty evacuation sites

and medical treatment facility sites in response to stochastic demands for service. In contrast to

asset emplacement strategy, this paper considers dispatching and transporting decision-making to

maximize a Golden Hour utility function.
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Bastian et al. (2012) examines the required capabilities of medical evacuation platforms of the

future U.S. MEDEVAC platforms, including identifying the zero-risk aircraft ground speed. Bastian

et al. (2013) further examine three research issues surrounding future U.S. MEDEVAC platforms,

including optimal operational capabilities, trade-off considerations of different aircraft engines, and

the effect of weaponizing the current MEDEVAC asset fleet on range, coverage radius, and response

time. While Bastian et al. (2012, 2013) evaluate competing objectives of future casualty evacuation

systems, this paper focuses on tactical issues such as real-time dispatch and transportation issues,

two issues that have been overlooked in the military MEDEVAC optimization literature. Therefore,

the model in this paper provides a unique contribution to the military MEDEVAC optimization

literature by examining the inter-related dispatching and casualty transporting decisions given that

there are errors in initial triage.

Military and civilian emergency service systems are similar in nature as both systems deal

with the transportation of time-sensitive customers/patients to higher level medical care facilities.

Further, both emergency service systems have high and low prioritized customers, a complexity

that makes resource allocation decisions difficult. To improve response and transport times to

the truly most critical patients, it is important to understand when to dispatch the closest server

versus when to ration that asset instead. McLay and Mayorga (2013) present a MDP model for

dispatching servers to spatially-distributed patients that maximizes the fraction of patients who are

responded to within a fixed time frame while allowing for the possibility of classification errors in

initial patient classification. This paper is similar to McLay and Mayorga (2013) as both develop a

MDP model and consider potential classification errors in initial classification. However, they differ

in that this paper evaluates the impact of additional information that becomes available over time

during the response to and treatment of a casualty as well as its impact on transport decisions.

Several other papers have examined dispatch issues for civilian EMS and fire departments.

Jarvis (1975) introduces a Markov decision process for determining optimal dispatching policies for

a single type of server. Swersey (1982) develops a Markov model for determining how many fire

engines to send to prioritized fire calls that balances the costs associated with dispatching too few or

too many. Ignall et al. (1982) extend this model to account for calls and fire engines that are spatially

distributed, and they provide a “preparedness” heuristic rather instead of exploring an optimal
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solution. Both Andersson and Värbrand (2007) and Lee (2011) propose similar “preparedness”

heuristics for dispatching ambulances to calls. A related stream of literature focuses on spatial

queuing models and approximations that describe dispatching dynamics rather than prescribing

dispatch decisions (Larson, 1974, 1975; Budge et al., 2009; Jarvis, 1985).

Emergency medical service systems identify which hospital to transport customers/patients. In

the civilian side, the patient or protocols from the medical director dictate to which hospital an

ambulance takes a patient, and therefore, there are rarely choices. Shunko et al. (2011) explores

hospital transport decisions using game theory in the context of two competing hospitals that can

send delay signals to turn away incoming ambulances, a situation that does not arise in military

medical systems.

In summary, this paper is distinct from the existing civilian emergency service systems literature,

because of its consideration of batch arrivals, prioritized casualties, and and the inclusion of casualty

transport in the modeling framework.

3 Markov decision process model

This section presents the MDP model for dispatching air MEDEVAC assets and transporting

prioritized casualties in a military medical evacuation system with imperfect information during

triage. The model parameters depend on the elapsed time during the treatment of each casualty,

because military medical evacuation systems are evaluated by the transfer of high-priority casualties

to the medical treatment facility before the Golden Hour. There are seven time steps to a military

medical evacuation (Bastian, 2010):

1. Notification time (call arrival).

2. MEDEVAC asset departure time (“wheels up”).

3. Arrival at the scene.

4. Departure from the scene.

5. Arrival at the medical treatment facility.

6. Transfer of the casualty to medical treatment facility.

7. Arrival at MEDEVAC asset home location (return to service).
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Figure 1: Time line during military medical evacuation

Figure 1 presents the four time intervals used throughout the remainder of this paper. Response

time is the length of time from departure time (2) to the MEDEVAC asset arrival at the scene

(3). Service time is the length of time from departure time (2) to leaving the scene (4). Transport

time is length of time from the MEDEVAC asset leaving the scene (4) to returning to its home

station after transporting a casualty (7). Transfer time is the length of time from injury (1) to the

casualty being transferred to a medical facility (6).

The input parameters of the MDP model are summarized next, followed by the system dynamics.

n = the number of casualty locations,

m = the number of air MEDEVAC assets, each at a fixed home location,

d = the number of medical treatment facilities,

R = the classified risk level during triage, with R ∈ {H,L}, where H (L) denotes classified

high-risk (low-risk),

r = the true risk level, with r ∈ {H ′, L′}, where H ′ (L′) denotes truly high-risk (low-risk),

λ = the call arrival rate,

X = random variable representing the number of casualties X ∈ {1, 2, . . . , N} arriving in a batch

arrival,

PXi = the conditional probability that a batch call for service with X casualties arrives at location

i, given that a call arrives, i = 1, 2, . . . n, X = 1, 2, . . . , N ,
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PXR|i = the conditional probability that a batch call for service with X casualties arrives at lo-

cation i has classified risk level R ∈ {H,L}, given that a call arrives, i = 1, 2, . . . , n,

X = 1, 2, . . . , N ,

PXr|R∩i = the conditional probability that a batch call for service with X casualties and classified

risk level R ∈ {H,L} has true risk level r ∈ {H ′, L′}, i = 1, 2, . . . , n,

µXij = the expected service time when MEDEVAC asset j responds to a batch call for service with

X casualties at location i, i = 1, 2, . . . , n and j = 1, 2, . . . , m, X = 1, 2, . . . , N ,

δijk = the expected transport time when MEDEVAC asset j transports a batch of casualties from

location i to medical treatment facility k where j = 1, 2, . . . , m, i = 1, 2, . . . , n, and k =

1, 2, . . . , d,

uXijkr = the expected utility when MEDEVAC asset j transports a batch of X casualties with

true risk level r ∈ {H ′, L′} from location i to medical treatment facility k, where j =

1, 2, . . . , m, i = 1, 2, . . . , n,X = 1, 2, . . . , N, and k = 1, 2, . . . , d.

The state variable reflects the positions of each of the m MEDEVAC assets and thus can be

represented by the m-dimensional vector s, with s(t) = (s1, s2, . . . , sm). To describe the state space

in a succinct way, we describe all possible values that each component of the state space can take. In

state s(t), MEDEVAC asset j has three possible types of values corresponding to the three possible

events in the system 1) asset j can be sent to a call for service that arrives, while servicing this call

at the scene, sj is described by a call location i, a classified priority R, and a batch size X, 2) asset

j finishes service at the scene of service and begins transporting casualties to a medical treatment

facility denoted by Dk, and 3) a busy MEDEVAC asset becomes free and returns to its home

location (sj = 0). Note that these possible values for sj—(i, R,X), Dk, 0—are all distinct values

that are mapped to integers in the computational implementation of the value iteration algorithm

used to solve the model. The total number of states is equal to (1 + 2Nn + nd)m. Although the

MDP model suffers from the so-called “curse of dimensionality,” we will explore conditions under

which the state space can be made smaller in Section 4.

Only one component of the state variable changes after an event occurs at time t. Therefore,

s(t + 1) = s(t) except for component sj in s(t + 1). Let φ denote the new value of sj in state

s(t+ 1), either (i, R,X), Dk, or 0. Let the transition function s(t+ 1) = SM (s(t)|sj = φ) capture

the new state at time t+ 1.
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The following assumptions are made in the model. First, if a call for service arrives, an available

MEDEVAC asset must be dispatched to the casualty if any are available. Otherwise the call is

assumed lost to our system. This assumption is acceptable because in practice, military systems

leverage other assets to treat these casualties (Bozell, 2013). Second, service cannot be preempted

and air MEDEVAC assets cannot be rationed in expectation of in-coming calls for service. Third,

a MEDEVAC asset selects a medical treatment facility destination immediately prior to departing

from the scene, and immediately after reassessing the casualty risk to obtain the true risk level

r. Therefore, transportation of casualties is made with information of the true risk level r ∈

{H ′, L′}. This can be contrasted with the dispatch decision which is made with the potentially

inaccurate triage classification. Thus, the interrelated decisions of dispatch and transport capture

the revelation of information of each casualty’s risk level over time. Fourth, the MEDEVAC asset

that responds to the casualty must transport the casualty to the medical treatment facility. Fifth,

batch arrivals of casualties at a location can be transported by a single responding MEDEVAC

asset, that is the capacity of an air MEDEVAC asset is greater than or equal to the number of

casualties in a batch. This assumption is reasonable, since in practice, the capacity of MEDEVAC

asset is larger enough to transport virtually all batched casualties that arrive (Bastian, 2010).

Lastly, risk levels are assessed on a batch level, not a casualty level. A single asset responds to a

batch, not individual casualties, and therefore, risk levels assigned on the batch level is practical

and easier to operationalize.

The objective of the MDP model is to determine which MEDEVAC asset to dispatch to a

casualty and identify which medical treatment facility to transport a casualty, for each state in

the state space, so that the expected number of truly high-priority calls that arrive at a medical

treatment facility within one hour per stage is maximized.

The optimality equations for the infinite-horizon, average cost MDP model are given next, where

I{sj=(i,R,X)}, I{sj=Dk}, and I{sj=0} are indicator functions representing MEDEVAC asset j is serving

X casualties at location i, traveling to medical treatment facility k, and being idle, respectively. An

infinite-horizon MDP model with steady-state parameters is appropriate because of the duration

of military operations. We use uniformization to convert a continuous time MDP model into an

equivalent discrete time MDP model. To apply uniformization, the maximum rate of transitions is
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determined to be γ = λ+
∑m

j=1 βj , where βj = max

{
maxi,X

{
1
µXij

}
,maxi,k

{
1
δijk

}}
, j = 1 . . .m.

Note that g is the optimal average utility per stage and νt(s(t)) is a relative value function in state

s(t) = (s1, s2, . . . , sm), and A1(s(t)) and A2(s(t)) represent the set of dispatching and transporting

actions available in state s(t) during iteration t, respectively.

g + ν(s(t)) =
1

γ

[
d∑

k=1

m∑
j=1

n∑
i=1

(δijk)−1I{sj=Dk}ν(SM (s(t)|sj = 0)) (1a)

+

n∑
i=1

N∑
X=1

∑
R∈{H,L}

λPX
i P

X
R|i max

j∈A1(s(t))
{ν(SM (s(t)|sj = (i, R,X)))} (1b)

+

n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

∑
r∈{H′,L′}

(µX
ij )−1I{sj=(i,R,X)}P

X
r|R∩i max

Dk∈A2(s(t))
{ν(SM (s(t)|sj = Dk)) + γuX

ijkr}

(1c)

+

γ − λ− n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

(µX
ij )−1I{sj=(i,R,X)} −

n∑
i=1

m∑
j=1

d∑
k=1

(δijk)−1I{sj=Dk}

 ν(s(t))

 (1d)

The four lines in the value functions (1) represent the three events that result in a change in the

state variable plus the fourth “event” that nothing changes between stages (line (1d)). The first

line (1a) accounts for the event of busy air MEDEVAC assets completing service after transporting

a casualty, where (δijk)
−1 captures the mean transport time and ν(SM (s(t)|sj = 0)) represents the

value of the state when MEDEVAC asset j returns home and is available for service. Line (1b)

accounts for the dispatch of a MEDEVAC asset to a batch of casualties of size X that arrives to

the system with classified priority R. Here, λPXi P
X
R|i captures the probability of a call for service

of X casualties at casualty location i and of classified risk level R arrives to the system. The

second part of line (1b) selects the MEDEVAC asset j to the incoming call for service (i, R,X)

that maximizes the value of dispatching a MEDEVAC asset. Line (1c) accounts for the decision

to transport a batch of casualties to a medical treatment facility, which occurs when service at the

scene is completed. Here, (µXij )−1 represents the mean service time at the scene, and PXr|R∩i captures

the conditional probability of the casualty’s true risk level r given its classified as risk level R and

location i. The second part of line (1c) selects the medical treatment facility that maximizes the

value of transporting casualties to a medical treatment facility, where uXijkr represents the reward

received when MEDEVAC asset j transports X casualties at casualty location i of true risk level r

to medical treatment facility k. Appendix A summarizes a value iteration convergence algorithm
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using the corresponding N -stage finite-horizon optimality equations (see Puterman, 1994).

Lastly, the assessment of the severity of the calls is imperfect during triage, resulting in possible

mismatches between the classified risk level R ∈ {H, L} and the true risk level r ∈ {H ′, L′} as

captured by the Pr|R∩i parameters. The accuracy of triage classification is assumed known, such

as from past system performance data. Since military medical evacuation systems are evaluated

according to the response to casualties that are truly the most critical (H ′), it is of interest to

match the classified risk levels R to the true risk levels r. Let α denote the ratio of the proportion

of classified high-risk casualties that are truly high-risk to the proportion of classified low-risk

casualties that are truly high-risk,

αX =
PXH′|H

PXH′|L
.

Therefore, αX can be interpreted as the accuracy of the triage for high-priority casualties, which we

assume is independent of the casualty location. When αX = 1.0, the classified high-risk casualties

are at least as likely to be truly high-risk as classified low-risk casualties. As αX → ∞, the set

of truly high-risk casualties is a subset of classified high-risk casualties (when PH′ ≤ PH). In the

MDP model, input parameter PXr|R∩i is a function of αX , and can be computed as follows. Note

that αX =
PX
H′|H∩i
PX
H′|L∩i

since triage accuracy is independent of the casualty location. Rearranging and

applying Bayes rule yields:

PXH′|H∩i =
αXPXH′

PXL∩i
(PXi|H′ − P

X
H∩i|h).

Rearranging, noting that PXL∩i|H′ + PXH∩i|H′ = PXi|H′ , and applying Bayes rule again yields:

PXH′|H∩i =
αXPXH′|i

PXH|i + (1/αX)PXL|i
.

The analogous procedure can be applied to classified low-risk calls, yielding PXH′|L∩i.

Appendix B contains theoretical results related to transportation policies in the MDP model

proposed in this paper. The first result indicates that if the expected times to transfer a casualty

at two medical treatment facilities are the same, it is optimal to transport to the medical treatment

facility with the highest utility. The second result indicates that if the utilities for transferring a

casualty at two medical treatment facilities are the same, it is optimal to transport to the medical
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treatment facility with the shortest expected time until transfer. However, these results are not

actionable when there are trade offs between transfer time and quality of care. Therefore, we

examine the trade offs in the computational example in the following section.

4 Computational example

4.1 Problem setup

Consider a military medical evacuation system example in support of an U.S. Army brigade, where

the location of casualties to be evacuated and medical treatment facilities are both known. As

described in Bastian et al. (2012), the area of operations for future U.S. Army brigades (a military

unit with over 3,000 personnel) is 300 km2, and a sub-area of 30 km2 containing four air MEDEVAC

assets and four casualty locations (m = n = 4) is proposed for analysis here (see Figure 2).

Figure 2: Geography of military medical evacuation system with 4 casualty locations and 4 air
MEDEVAC assets

Each square in Figure 2 is 15 kilometers long and 15 kilometers wide. Travel times are computed

using the Euclidean distance between locations and MEDEVAC assets have a flight speed of 155

nautical miles per hour (knots) Bastian (2010).

There are two distinguishable medical treatment facilities (i.e., d = 2) available in support of

the Army brigade—the first is a role 2 medical treatment facility denoted k = 2, and the second is
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a role 3 medical treatment facility denoted k = 3. The utilities ui,j,k,H′ are set based on the time

it takes for asset j to transfer a casualty at location i to medical treatment facility k. Suppose this

transport time takes t hours, on average, to a role 2 medical treatment facility. Then, the modified

Golden Hour utility function as a function of t is max{−t60 + 1, 0}. The utilities for transporting a

casualty to a role 3 medical treatment facility is assumed to be a factor of Γ increase over the role

2 utility. Moreover, we assume the utility for transporting true low-priority casualties is zero, since

these casualties are expected to survive regardless of where they are transported.

We focus on the disparity in proximity and medical treatment quality between the role 3 and role

2 medical treatment facilities in this example. The relative utilities and travel times between these

two types of facilities are pertinent when managing military medical evacuation system logistics.

Therefore, define the distance ratio θ as the relative travel distance to the role 3 medical treatment

facility as compared to the role 2 medical treatment facility for each call location i and responding

MEDEVAC asset j:

θ =
δi, j, 3
δi, j, 2

, i = 1, 2, . . . n, j = 1, 2, . . .m.

When θ = 2, the relative transport time to the role 3 medical treatment facility is twice the relative

transport time to the role 2 medical treatment facility, given the same MEDEVAC asset j and

demand location i.

Define the reward ratio Γ to distinguish between the system utility received transporting a truly

high-priority casualty to the role 3 medical treatment facility and the utility received transporting

a truly high-priority casualty to the role 2 medical treatment facility.

Γ =
ui, j, 3, H′

ui, j, 2, H′
, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

When Γ = 2, the role 3 medical treatment facility is twice as medically capable as the role 2 medical

treatment facility, due to better resources, surgeons on staff, etc.

Table 1 reports the average utility when transporting to the role 2 medical treatment facility

or the role 3 medical treatment facility, for each MEDEVAC asset j and casualty location i under

the base case of the military medical evacuation system in this example.

Many of the transition probabilities depend on the length of time until a busy MEDEVAC asset
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Table 1: Average utility when transporting a true high-priority casualty to the role 2 medical
treatment facility and the role 3 medical treatment facility

ui, j, 2, H′ i = 1 i = 2 i = 3 i = 4

j = 1 0.364 0.364 0.291 0.291
j = 2 0.312 0.417 0.312 0.269
j = 3 0.291 0.364 0.364 0.291
j = 4 0.312 0.343 0.312 0.343

ui, j, 3, H′ i = 1 i = 2 i = 3 i = 4

j = 1 0.456 0.456 0.363 0.363
j = 2 0.390 0.520 0.390 0.336
j = 3 0.363 0.456 0.456 0.363
j = 4 0.390 0.429 0.390 0.429

becomes free, for each dispatching or transporting action, or a call for service ends. Table 2 presents

the average service and transport time when responding to a call for service under the base case of

the military medical evacuation system in this example.

Table 2: Average service times and average transport times (in hours)
µi, j i = 1 i = 2 i = 3 i = 4

j = 1 0.500 0.552 0.574 0.552
j = 2 0.552 0.500 0.552 0.574
j = 3 0.574 0.552 0.500 0.552
j = 4 0.552 0.574 0.552 0.500

δi, j, 2 i = 1 i = 2 i = 3 i = 4

j = 1 0.188 0.136 0.188 0.210
j = 2 0.136 0.083 0.136 0.157
j = 3 0.188 0.136 0.188 0.210
j = 4 0.210 0.157 0.210 0.231

δi, j, 3 i = 1 i = 2 i = 3 i = 4

j = 1 0.376 0.271 0.376 0.419
j = 2 0.271 0.167 0.271 0.315
j = 3 0.376 0.271 0.376 0.419
j = 4 0.419 0.315 0.419 0.462

The remaining transition probabilities depend on the rate at which casualties arrive to the

system. Calls arrive according to a Poisson process with parameter λ = 3.0 calls per hour. The

distribution of calls Pi are unevenly spaced across the four casualty locations. There is a “hotbed”

of activity and more frequent calls for service in location 2. Table 3 presents the base case set of

input parameters and the corresponding ranges used for sensitivity analysis in this example.

All computations are performed on dual servers with Quad-Core 3.00 GHz processors and
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Table 3: Input parameters and ranges considered for sensitivity analysis
Input parameter Base case value Parameter range

Medical treatment facilities d 2 -
Casualty locations n 4 -
Air MEDEVAC assets m 4 -
Classified risk levels R 2 -
Reward Ratio Γ 1.25 [1, 1.5]
Distance Ratio θ 2 [2, 6]
Triage accuracy α 106 [1, 106]
Call arrival rate per hour λ 3.0 [1.5, 3.25]
Casualties in a batch X 1 -
Probability of casualty at each location Pi [0.25 0.50 0.10 0.15] -

16GB RAM. To solve the Markov decision process model (see Puterman, 1994) a value iteration

convergence algorithm with tolerance of 10−5 is used. The value iteration convergence algorithm

is presented in Appendix A. The run time for the value iteration algorithm is approximately 250

minutes for the base case model with 83,521 states and 30 replications of a simulation for 10,000

casualties has a run time of approximately 18 minutes.

4.2 Policy Comparison

The optimal Markov decision process solution is compared to three heuristic policies: 1) transport

all casualties to the most rewarding medical treatment facility 2) transport all casualties to the

closest medical treatment facility and 3) transport low-priority casualties to the closest medical

treatment facility and transport high-priority casualties to the most rewarding medical treatment

facility. All three heuristics dispatch the closest available server. Figure 3 compares the objective

function value of the MDP to the performance of the three heuristics. The objective function

values are rescaled so that values reflect the average modified Golden Hour utility received per

casualty. Insights to be gained from figure 3 include the magnitude of improvement in system

performance from leveraging optimization techniques versus heuristic policies. The optimal policy

yields solution values that are, on average, 4.55%, 21.32%, and 0.72% better than heuristics 1, 2,

and 3, respectively, as the distance ratio θ increases. It is also of note that when the distance ratio

is small, e.g. θ = 2, the MDP only mildly outperforms heuristic 3 and heuristic 1. However, as the

distance ratio θ increases, the margin in which the MDP outperforms the best heuristic increases.
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Figure 3: Simulated policy comparison

The loss rate is defined as the percentage of calls for service lost within the military medical

evacuation system, due to the system being overcrowded with no available air MEDEVAC assets.

For the MDP model, under the base case with λ = 3.0 and θ = 2, the loss rate is 12.97%.

Likewise, when θ = 6 the loss rate is 16.38%. In practice, the so-called “lost” calls are delegated

to non-traditional MEDEVAC assets so that all casualties receive timely service. Military medical

evacuation systems differ from their civilian counterparts in that every effort is made to keep the

queue for service at zero (Bozell, 2013).

4.3 Dispatching and Transporting Sensitivity

The MDP model optimizes over both the dispatching and transporting decisions, and therefore

it is of interest to know when to transport casualties to the different medical treatment facilities.

Figures 4(a) - 4(c) illustrate the sensitivity of the proportion of high-priority casualties delivered

to the role 3 medical treatment facility as a function of the distance ratio θ for different Γ, λ, andα

values. A main insight of military medical evacuation systems, seen in figure 4(a), is the impact
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of the reward ratio Γ on the proportion of casualties transported to the more rewarding facility.

Specifically, when the role 3 medical treatment facility is 50% better than the role 2 medical

treatment facility (Γ = 1.5), all high priority casualties are transported to the more rewarding role

3 medical treatment facility, regardless of whether the role 3 medical treatment facility is close or

far. Figure 4(b) provides insights on how the call arrival rate λ effects the system. An increase

in λ floods the system with more casualties and more high priority casualties are transported to

the role 2 medical treatment facility that is closer, so that servers can end service and be available

to respond. It is optimal to deliver almost all true high-priority casualties to the role 3 medical

treatment facility unless the role 3 medical treatment facility is very distant and there are few

marginal benefits or high call volume. In sum, these results suggest that a heuristic that transports

truly high-priority casualties to the medical treatment facility with the higher utility (unless it is

extremely distant) and truly low-priority casualties to the nearest medical treatment facility, as

done by Heuristic 3, can be used be military decision makers as a near optimal transportation

policy. A heuristic transport policy has the added benefit of greatly reducing the state space to

(1 + nN)m states, which helps to improve model scalability. However, it is less clear which asset

to send upon initial dispatch. The dispatch decision is largely responsible for the difference in

performance between the optimal policy and Heuristic 3 (see Figure 3), and therefore, we examine

this issue next.

Table 4 presents the proportion of classified high-priority and low-priority calls to whom the

closest MEDEVAC asset is dispatched, which captures system insights on whether to send the

closest server or ration it instead. We note that the closest MECVAC asset is not always available,

so it is impossible for these values to be equal to 1.0. We examine this decision across different

levels of triage accuracy from a worst-case lower bound α = 1 to α = 100. Consider the classified H

casualties in Table 4. The general insight we gain is that the frequency in which the closest server

is dispatched decreases for locations 3 and 4, and increases for locations 1 and 2. The model is

accounting for the call location distribution Pi, where location 1 and 2 have the greatest probability

of a call for service, and reducing the response time to classified H calls for service in location 1

and 2. Reducing the response time by sending the closest server allows the servers to finish service

and become available sooner for the additional calls expected in location 1 and 2.

17



2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.2

0.4

0.6

0.8

1

Distance Ratio θ

pr
op

or
tio

n 
of

 H
’ c

as
ua

lti
es

tr
an

sp
or

te
d 

to
 th

e 
ro

le
 3

 M
T

F

 

 

Γ = 1

Γ = 1.10

Γ = 1.25

Γ = 1.5

(a) Γ sensitivity

2 2.5 3 3.5 4 4.5 5 5.5 6
0.5

0.6

0.7

0.8

0.9

1

1.1

Distance Ratio θ

pr
op

or
tio

n 
of

 H
’ c

as
ua

lti
es

tr
an

sp
or

te
d 

to
 th

e 
ro

le
 3

 M
T

F

 

 

λ = 1.5

λ = 1.75

λ = 2.25

λ = 2.75

λ = 3.25

(b) λ sensitivity

2 2.5 3 3.5 4 4.5 5 5.5 6
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Distance Ratio θ

pr
op

or
tio

n 
of

 H
’ c

as
ua

lti
es

tr
an

sp
or

te
d 

to
 th

e 
ro

le
 3

 M
T

F

 

 

α = 1

α = 10

α = 1e6

(c) α sensitivity

Figure 4: Sensitivity analysis on the proportion of true high-priority casualties H ′ transported to
the role 3 medical treatment facility, with respect to distance ratio θ
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In a similar manner, Table 4 also presents the closest MEDEVAC asset dispatching frequency

for classified low-priority casualties. As α increases, each MEDEVAC asset generally responds to

fewer calls in its “home” location. Therefore, when information is more accurate (i.e., when α is

large), the system “saves” some MEDEVAC assets for responding to nearby truly high-priority

casualties by strategically sending more distant MEDEVAC assets to low-priority casualties. This

suggests that as classification accuracy improves, it is optimal to ration MEDEVAC assets in areas

with the largest rate of truly high-priority calls.

Table 4: Proportion of calls for service at each location that are responded to by the closest
MEDEVAC asset

θ α Location i classified H calls classified L calls

θ = 2 α = 1 1 0.506 0.506
2 0.447 0.447
3 0.503 0.503
4 0.555 0.555

α = 10 1 0.516 0.416
2 0.535 0.071
3 0.460 0.456
4 0.484 0.480

α = 100 1 0.534 0.256
2 0.535 0.069
3 0.461 0.430
4 0.452 0.461

θ = 6 α = 1 1 0.434 0.434
2 0.388 0.389
3 0.422 0.422
4 0.478 0.478

α = 10 1 0.447 0.349
2 0.463 0.077
3 0.409 0.406
4 0.431 0.440

α = 100 1 0.457 0.237
2 0.464 0.076
3 0.415 0.347
4 0.415 0.411

We further study the impact of the initial dispatch decision on later transport decisions by

examining whether the transport decisions depend on the MEDEVAC asset dispatched. Recall that

the MEDEVAC asset dispatched to a call for service also transports the casualty. Table 5 shows

the proportion of true high-priority casualties that are transported to role 3 medical treatment
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Table 5: Proportion of true high-priority casualties transported to role 3 medical treatment facility
based on the responding MEDEVAC asset

Closest MEDEVAC More distant MEDEVAC
θ α i asset responds asset responds

2 α = 1, 10, and 100 1 1.000 1.000
2 1.000 1.000
3 1.000 1.000
4 1.000 1.000

6 α = 1 1 0.541 0.249
2 1.000 0.780
3 0.809 0.231
4 0.480 0.037

α = 10 1 0.560 0.139
2 1.000 0.761
3 0.775 0.145
4 0.429 0.042

α = 100 1 0.563 0.105
2 1.000 0.756
3 0.751 0.107
4 0.317 0.053

facility in two cases: when the closest MEDEVAC asset responds and when further MEDEVAC

assets respond. Here, we see that when θ = 2 all responding MEDEVAC assets transport casualties

to the role 3 medical treatment facility, both when dispatch classification is poor (α = 1) and

when dispatch classification is better (α = 100). Also, when the role 3 medical treatment facility

is further and θ = 6, we see that more distant responding MEDEVAC assets are less likely to later

transport truly high-priority casualties to role 3 medical treatment facilities. There is less incentive

(in terms of the Golden Hour performance measure) to transport casualties to the role 3 medical

treatment facility when more distant MEDEVAC assets respond to a casualty. Tables 4 and 5

together shed light on how the revelation of information affects decisions throughout the treatment

and delivery of each casualty. In particular, when there are more initial classification errors, distant

assets are more likely to respond to H ′ casualties, who are then less likely to be transported to

medical treatment facilities with the best capabilities.
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5 Conclusions

This paper models and analyzes optimal dispatching and transporting policies in military medical

evacuation systems. Timely transportation of casualties motivates the need to examine how to make

better interrelated decisions—how to dispatch MEDEVAC assets to casualties and then transport

casualties to medical treatment facilities—given the revelation of information over the duration of

each call. An undiscounted, infinite horizon, average-cost MDP model is formulated to identify

optimal policies, which is solved using a value iteration algorithm. In the computational example,

a situation where two medical treatment facilities are distinguishable by both their proximity to

calls for service (distance) and treatment capability (reward) is considered. Each dispatching and

transporting decision effects system resources being busy or available to respond to additional calls

for service. Optimal decision policies utilize the better role 3 medical treatment facility with varying

frequency, as system input parameters such as call volume and dispatcher classification ability are

varied. The optimal policy outperforms three heuristics considered in this paper on average by

4.55%, 21.32%, and 0.72%, respectively. The initial dispatch decisions account for much of the

improvement over the heuristic policies. The computational results suggest that for most settings,

a heuristic policy could be used for the transport decisions, which would greatly reduce the state

space and improve model scalability.

Future work will focus on the locating of two types of MEDEVAC assets, such as air assets and

ground assets. Another extension is to consider co-locating multiple types of dependent military

assets, such as a MEDEVAC asset and a security escort asset, to dispatch one unit of each type in

tandem to a casualty incident. A bi-objective model for balancing casualty Golden Hour coverage

levels and risk tolerance, such as found in risky evacuation missions. Work is also under way to

address these extensions.
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Appendices

A Value Iteration Convergence Algorithm

To solve for the optimal policy, the relative value function algorithm (see Puterman, 1994) is run

using the finite-horizon value functions. Therefore, t is the iteration here, not time. To do so, define

νt(s(t)) as the value of being in state s(t) during iteration t, for t = 0, . . . , N − 1, and ν0(s(t)) = 0

for all s(t) ∈ S.

νt+1(s(t)) =
1

γ

[
d∑

k=1

m∑
j=1

n∑
i=1

(δijk)−1I{sj=Dk}νt(S
M (s(t)|sj = 0)) (2a)

+
n∑

i=1

N∑
X=1

∑
R∈{H,L}

λPX
i P

X
R|i max

j∈A1(s(t))
{νt(SM (s(t)|sj = (i, R,X)))} (2b)

+

n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

∑
r∈{H′,L′}

(µX
ij )−1I{sj=(i,R,X)}P

X
r|R∩i max

Dk∈A2(s(t))
{νt(SM (s(t)|sj = Dk)) + γuX

ijkr}

(2c)

+

γ − λ− n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

(µX
ij )−1I{sj=(i,R,X)} −

n∑
i=1

m∑
j=1

d∑
k=1

(δijk)−1I{sj=Dk}

 νt(s(t))

 (2d)

To achieve the optimal policy, the relative value iteration algorithm is run until the upper and

lower bounds converge to the optimal average utility per stage g

Lt ≤ Lt+1 ≤ g ≤ Ut+1 ≤ Ut,

with lower bound

Lt = min
s(t)∈S

[νt+1(s(t))− νt(s(t))]

and upper bound

Ut = max
s(t)∈S

[νt+1(s(t))− νt(s(t))].

The value iteration algorithm is executed until Ut+1 − Lt+1 ≤ ε, for a given ε.
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B Theoretical Results

We consider the finite stage optimality equations and consider the limit. The N -stage case MDP

equations are in Appendix A. Note that in section 3, equation 1a - 1d capture the exact, infinite

horizon, average cost optimality equations. In contrast, equation 2a - 2d capture the optimality

equations for the finite-horizon case.

Next we exploit the finite case optimality equations to analyze the MDP structural properties.

The first lemma shows that it is always optimal to choose to transport casualties to the more

rewarding medical treatment facilities when two when two medical treatment facilities have the

same expected transport time. This suggests that transporting to the closest facility is optimal.

Lemma 1. Suppose a MEDEVAC asset j finishes service at location i and needs to transport a

casualty with risk level r to one of two medical treatment facilities, labeled as 1 and 2, r ∈ {H ′, L′}.

If both facilities have the same expected transport time, i.e., δij1 = δij2 and facility 1 has a higher

utility than facility 2, i.e., uXij1r ≥ uXij2r, then it is always better to deliver to the facility with the

highest utility.

Proof. Without loss of generality, assume that the system is in state s(t) with value νt(s(t)). The

set of available transport decisions here are A2(s(t)) = {D1, D2}, which correspond to facilities 1

and 2. Let s1(t+ 1) and s2(t+ 1) denote the states when facilities 1 and 2 are selected, respectively

(see (1c)). It is sufficient to show that νt(s1(t+ 1)) + γuXij1r ≥ νt(s2(t+ 1)) + γuXij2r. Note that in

this case, the state in place j corresponding to asset j moves into the same transport state (i.e.,

sj = D whether medical treatment facility 1 or 2 is selected. Then, we can rearrange this to obtain

γuXij1r − γuXij2r ≥ νt(s2(t+ 1))− νt(s1(t+ 1)).

Since δij1 = δij2 for i = 1, ..., n, j = 1, ...,m, then the value functions in these two states entirely

cancel, yielding γuXij1r − γuXij2r ≥ 0, which is true since γ > 0 and uXij1r ≥ uXij2r for i = 1, ..., n, j =

1, ...,m, r ∈ {H ′, L′}.

The next proposition shows that the average utility per stage is higher in a state when a

MEDEVAC is available as compared to when it is busy transporting a casualty.
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Proposition 1. Let state s(t) be a state where server j is available, i.e., sj(t) = 0. Let state ŝ(t)

be the corresponding state where server j is transporting a casualty, i.e., ŝj(t) = Dk for some k and

ŝl(t) = sl(t), l = 1, ...,m and l 6= j. Then νt(s(t))− νt(ŝ(t)) ≥ 0 for all t ≥ 0.

Proof. The claim will be shown by induction. First, note that the claim is trivially true for t = 0

since νt(s(0)) = 0 for all states s(0). Let s(t) and s(t+ 1) denote identical states at different times.

After some rearranging:

γ(νt+1(s(t+ 1))− νt+1(ŝ(t+ 1)) =

d∑
k=1

m∑
j=1

n∑
i=1

(δijk)
−1I{sj=Dk}(νt(S

M (s(t)|sj = 0))− νt(SM (ŝ(t)|ŝj = 0)))

+
n∑

i=1

N∑
X=1

∑
R∈{H,L}

λPX
i PX

R|i

(
max

j∈A1(s(t))
{νt(SM (s(t)|sj = (i, R,X)))} − max

j∈A1(ŝ(t))
{νt(SM (ŝ(t)|ŝj = (i, R,X)))}

)
(3a)

+

n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

∑
r∈{H′,L′}

Pr|R∩i

µXij
I{sj=(i,R,X)}

(
max

Dk∈A2(s(t))
{νt(SM (s(t)|sj = Dk)) + γuXijkr}− (3b)

max
Dk∈A2(ŝ(t))

{νt(SM (ŝ(t)|ŝj = Dk)) + γuXijkr}
)

+

γ − λ− n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

(µXij )
−1I{sj=(i,R,X)} −

n∑
i=1

m∑
j=1

d∑
k=1

(δijk)
−1I{sj=Dk}

 (νt(s(t))− νt(ŝ(t))).

Note that in line (3a), the set of actions in A1(s(t)) is a subset of those in state A1((s(t + 1)).

Let j∗ = arg max
j
{A1(ŝ(t + 1))}. We can bound the expression above from below by setting both

decisions in (3a) to j∗. Likewise, we can apply this same idea to the actions in A2(s(t)) selected in

both maximizations in (3b). Let d∗ = arg max
Dk

{A2(ŝ(t + 1))}, and set the destination in the first

maximization to d∗. Then,

γ(νt+1(s(t+ 1))− νt+1(ŝ(t+ 1)) =

d∑
k=1

m∑
j=1

n∑
i=1

(δijk)
−1I{sj=Dk}(νt(S

M (s(t)|sj = 0))− νt(SM (ŝ(t)|ŝj = 0)))

+

n∑
i=1

N∑
X=1

∑
R∈{H,L}

λPX
i PX

R|i

(
νt(S

M (s(t)|sj∗ = (i, R,X)))} − {νt(SM (ŝ(t)|ŝj∗ = (i, R,X)))}
)

+
n∑

i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

∑
r∈{H′,L′}

Pr|R∩i

µXij
I{sj=(i,R,X)}

(
νt(S

M (s(t)|sj = d∗))− νt(SM (ŝ(t)|ŝj = d∗))
)

+

γ − λ− n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

(µXij )
−1I{sj=(i,R,X)} −

n∑
i=1

m∑
j=1

d∑
k=1

(δijk)
−1I{sj=Dk}

 (νt(s(t))− νt(ŝ(t))).

Here, all four lines are non-negative using by the induction assumption. Therefore, the claim is

true.

27



The second lemma shows that it is always optimal to choose to transport casualties to the

“closer” medical treatment facility if both facilities have the same utility, where a facility is “closer”

to a casualty at location i with asset j if its expected transport time is smaller,

Lemma 2. Suppose in state s(t) a MEDEVAC asset finishes service at the scene and needs to

transport a casualty with risk level r to one of two medical treatment facilities, labeled as 1 and

2, r ∈ {H ′, L′}. If both facilities have the same utility, i.e., uXij1r = uXij2r for i = 1, ..., n, j =

1, ...,m, r ∈ {H ′, L′}, and the expected transport time is shorter for facility 1, i.e., δij1 < δij2 for

i = 1, ..., n, j = 1, ...,m, then νt(S
M (s(t)|sj = D1)) − νt(SM (s(t)|sj = D2)) ≥ 0 for all t ≥ 0 and

it is always better to deliver to the facility with the smaller expected service time.

Proof. The claim will be shown by induction. First, note that the claim is trivially true for t = 0

since νt(s(0)) = 0 for all states s(0). We assume that νt(s1(t))−νt(s2(t)) ≥ 0 for all states s1 and s2

that are identical . Let MEDEVAC asset j∗ be the asset that must transport casualties to a medical

treatment facility. Let the state s1(t+1) = SM (s(t)|sj = D1) and let s2(t+1) = SM (s(t)|sj = D2).

Next, after some rearranging:

γ(νt(s1(t+ 1))− νt(s2(t+ 1))) =

d∑
k=1

m∑
j=1,j 6=j∗

n∑
i=1

(δijk)
−1I{sj=Dk}(νt(S

M (s1(t)|s1j = 0))− νt(SM (s2(t)|s2j = 0)))

+
n∑

i=1

N∑
X=1

∑
R∈{H,L}

λPX
i PX

R|i

(
max

j∈A1(s1(t))
{νt(SM (s1(t)|s1j = (i, R,X)))} − max

j∈A1(s2(t))
{νt(SM (s2(t)|s2j = (i, R,X)))}

)
(4a)

+

n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

∑
r∈{H′,L′}

Pr|R∩i

µXij
I{s1j=(i,R,X)}

(
max

Dk∈A2(s1(t))
{νt(SM (s1(t)|sj = Dk)) + γuXijkr}− (4b)

max
Dk∈A2(s2(t))

{νt(SM (s2(t)|s2j = Dk)) + γuXijkr}
)

+

γ − λ− n∑
i=1

N∑
X=1

m∑
j=1,j 6=j∗

∑
R∈{H,L}

(µXij )
−1I{sj=(i,R,X)} −

n∑
i=1

m∑
j=1

d∑
k=1

(δijk)
−1I{sj=Dk}

 (νt(s1(t))− νt(s2(t)))

+
(
(δij1)

−1 − (δij2)
−1
)
ν(s(t+ 1))−

(
(δij1)

−1ν(s1(t)) + (δij2)
−1ν(s2(t))

)
.

As in Proposition 1, let j∗ = arg max
j
{A1(s2(t))}. We can bound the expression above from below

by setting both decisions in (4a) to j∗. Likewise, we can apply this same idea to the actions selected

in both maximizations in (4b). Let d∗ = arg max
Dk

{A2(s2(t))}, and set the destination in the first

maximization to d∗. Moreover, the last line can be rearranged to yield:

(δij1)
−1(ν(s0(t))− ν(s1(t)))− (δij2)

−1(ν(s0(t))− ν(s2(t)))
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after noting that s0(t) = SM (s1(t)|s1j = 0) = SM (s2(t)|s2j = 0). Moreover, we can bound this

below by applying the induction assumption, with

(δij1)
−1(ν(s0(t))−ν(s1(t)))−(δij2)

−1(ν(s0(t))−ν(s2(t))) ≥
(
(δij1)

−1 − (δij1)
−1) (ν(s0(t))−ν(s1(t))).

This yields:

γ(νt(s1(t+ 1))− νt(s2(t+ 1))) ≥

d∑
k=1

m∑
j=1,j 6=j∗

n∑
i=1

(δijk)
−1I{sj=Dk}(νt(S

M (s1(t)|s1j = 0))− νt(SM (s2(t)|s2j = 0)))

+

n∑
i=1

N∑
X=1

∑
R∈{H,L}

λPX
i PX

R|i

(
νt(S

M (s1(t)|s1j∗ = (i, R,X)))− νt(SM (s2(t)|s2j∗ = (i, R,X)))
)

+

n∑
i=1

N∑
X=1

m∑
j=1

∑
R∈{H,L}

∑
r∈{H′,L′}

Pr|R∩i

µXij
I{s1j=(i,R,X)}

(
νt(S

M (s1(t)|sj = d∗))− νt(SM (s2(t)|s2j = d∗))
)

+

γ − λ− n∑
i=1

N∑
X=1

m∑
j=1,j 6=j∗

∑
R∈{H,L}

(µXij )
−1I{sj=(i,R,X)} −

n∑
i=1

m∑
j=1

d∑
k=1

(δijk)
−1I{sj=Dk}

 (νt(s1(t))− νt(s2(t)))

+
(
(δij1)

−1 − (δij2)
−1
)
(ν(s0(t))− ν(s1(t))).

The first four lines are greater than or equal to zero by the induction assumption. The last line is

greater than or equal to zero by Proposition 1 and by noting that (δij1)
−1 − (δij2)

−1 ≥ 0.
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